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Abstract. The aim of this paper is devoted to the study of an exterior algebra (Grassmann Algebra) and briefly discusses 
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1. Introduction            
                                                                     
Exterior algebra [1] and differentials forms are two 
important sections in differential geometry [7]. In 
mathematics, the exterior product or wedge product [3] of 
vectors is an algebraic construction used in Euclidean 
geometry to study areas, volumes, and their higher-
dimensional analogs. The exterior product of two 
vectors 𝑢 and 𝑣, denoted by 𝑢 ∧ 𝑣, is called a bivector. 
The magnitude of 𝑢 ∧ 𝑣 can be interpreted as the area of 
the parallelogram with sides 𝑢 and 𝑣, which in three-
dimensions can also be computed using the cross product 
of the two vectors. Also like the cross product, the 
exterior product is anticommutative, meaning that 
𝑢 ∧ 𝑣 =  −𝑣 ∧ 𝑢 for all vectors 𝑢 and 𝑣. Tensors 
products are not at all necessary for the understanding or 
use of Grassmann algebra. As we shall it is possible to 
build Grassmann algebra using tensors products as a tool. 
We develop the elementary theory of Grassmann algebra 
on an axiomatic basis. Finally we discuss the integration 
of differential forms by using exterior algebra. 
 
Definition 1. The exterior algebra ∧ (𝑉) over a vector 
space 𝑉 over a field 𝐾 is defined as the quotient algebra of 
the tensor algebra by the two-sided ideal 𝐼 generated by 
all elements of the form 𝑥 ⊗  𝑥 such that 𝑥 ∈  𝑉. 
Symbolically, 

∧ (𝑉) ≔ 𝑇(𝑉)/𝐼 
the wedge product ′ ∧ ′ of two elements of ∧ (𝑉) is 
defined by  𝛼 ∧ 𝛽 = 𝛼⊗ 𝛽 (𝑚𝑜𝑑 𝐼) 
The exterior algebra was first introduced by Hermann 
Grassmann in 1844. 
 
Axioms of Grassmann Algebra: 
 
1. The Grassmann product is associative that is, 

(𝑓 ∧ 𝑔) ∧ ℎ = 𝑓 ∧ (𝑔 ∧ ℎ) 

2. The Grassmann product is multilinear that is, 
𝑣1 ∧…∧ (𝛼1𝑢1 + 𝛼2𝑢2 ∧ …∧ 𝑣𝑟)

= 𝛼1(𝑣1 ∧ …∧ 𝑢1 ∧ …∧)
+ 𝛼2(𝑣2 ∧ …∧ 𝑢2 ∧…∧) 

3. The product is nilpotent that is, any 𝑣 ∈ 𝑉, 𝑣 ∧ 𝑣 = 0 
4. The set of all products 𝑒𝑖1 ∧ …∧ 𝑒𝑖𝑟  is linearly 
independent. 
2. The exterior power 
 
The 𝑘-th exterior power of 𝑉, denoted ∧ P

k(V), is the vector 
subspace of ∧ (𝑉) spanned by elements of the form              

𝑥1 ∧ 𝑥2 ∧ …∧ 𝑥𝑘   ,     𝑥𝑖 ∈ 𝑉, 𝑖 = 1,2, … ,𝑘 
If α ∈ ∧ P

k(V), then α is said to be a 𝑘-multivector. If, 
furthermore, α can be expressed as a wedge product of k 
elements of V, then α is said to be decomposable.  
For example, inℝ4, the following 2-multivector is not 
decomposable: 𝛼 = 𝑒1 ∧ 𝑒2 + 𝑒3 ∧ 𝑒4 
This is in fact a symplectic form, since 𝛼 ∧  𝛼 ≠  0. 
We can express the 2-form 𝑑𝑥 ∧ 𝑑𝑦 in polar coordinates 
by setting 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 we obtain  
   𝑑𝑥 ∧ 𝑑𝑦 = 𝑟𝑑𝑟 ∧ 𝑑𝜃 
3. Exterior derivative of a k-form 
 
The exterior derivative [8] is defined to be the unique R-
linear mapping from k-forms to (k+1)-forms satisfying the 
following properties: 
1.  𝑑𝑓 is the differential of ƒ for smooth function ƒ. 
2. 𝑑(𝑑𝑓) = 0 for any smooth function ƒ. 
3. 𝑑 (𝛼 ∧ 𝛽)  =  𝑑𝛼 ∧ 𝛽 +  (−1)𝑝(𝛼 ∧ 𝑑𝛽) where 
α is a p-form. That is to say, d is a derivation of degree 1 
on the exterior algebra of differential forms. 
The second defining property holds in more generality: in 
fact, 𝑑(𝑑𝛼)  =  0 for any 𝑘 −form 𝛼.The third defining 
property implies as a special case that if ƒ is a function 
and 𝛼 a 𝑘-form, then 𝑑(ƒ𝛼)  =  𝑑ƒ ∧ 𝛼 +  ƒ ∧ 𝑑𝛼 because 
functions are forms of degree 0. 
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Theorem 2 (Poincare’s Lemma). [9] 𝑑2 = 0, that is for 
any exterior differential form 𝜔, 𝑑(𝑑𝜔) = 0. 

 

Theorem 3. Suppose 𝜔 is a differential 1-form on a 
smooth manifold  𝑀. 𝑋 and 𝑌 are smooth tangent vector 
fields on 𝑀. Then                                     
  < 𝑋 ∧ 𝑌 ,𝑑𝜔 >  =   𝑋 < 𝑌 ,𝜔 >  −  𝑌 < 𝑋 ,𝜔 >  − <
[ 𝑋 ,𝑌 ] ,𝜔 >   
             
Proof. Given < 𝑋 ∧ 𝑌 ,𝑑𝜔 >  =   𝑋 < 𝑌,𝜔 > − 𝑌 <
𝑋 ,𝜔 > −< [ 𝑋 ,𝑌 ] ,𝜔 >         (1)       
since both sides of (1) are linear with respect to 𝜔 , we 
may assume that  𝜔 is a monomial 
𝜔 = 𝑔 𝑑𝑓    ; where 𝑓 and  𝑔 are smooth functions on  𝑀 
                     ⇒ 𝑑𝜔 = 𝑑𝑔 ∧  𝑑𝑓  
L.H.S:      < 𝑋 ∧ 𝑌,𝑑𝜔 >   
 
= < 𝑋 ∧ 𝑌 , 𝑑𝑔 ∧ 𝑑𝑓 > 
 

            =  �
 < 𝑋 ,𝑑𝑔 > < 𝑋 , 𝑑 >
 < 𝑌 , 𝑑𝑔 > < 𝑌 , 𝑑 >� 

 

            = � 𝑋𝑔  𝑋𝑓  
𝑌𝑔  𝑌𝑓  � =  𝑋𝑔.𝑌𝑓 − 𝑋𝑓.𝑌𝑔 

 

             R.H.S:  𝑋 < 𝑌 ,𝜔 >  −  𝑌 < 𝑋 ,𝜔 >
                                     − < [ 𝑋 ,𝑌 ] ,𝜔 > 
           = 𝑋 < 𝑌 ,𝑔 𝑑𝑓 >  −  𝑌 < 𝑋 ,𝑔 𝑑𝑓 >
                                                − < [ 𝑋 ,𝑌 ] ,𝑔 𝑑𝑓 > 
           = 𝑋(𝑔 𝑌𝑓 ) −   𝑌( 𝑔 𝑋𝑓 )  −  𝑔[ 𝑋 ,𝑌 ] 𝑓 
 

 = 𝑋𝑔.𝑌𝑓 +  𝑔 𝑋𝑌𝑓 − 𝑌𝑔.𝑋𝑓 − 𝑔 𝑌𝑋𝑓 − 𝑔 𝑋𝑌𝑓 
+ 𝑔 𝑌𝑋𝑓 = 𝑋𝑔.𝑌𝑓 − 𝑋𝑓.𝑌𝑔 

Therefore L.H.S = R.H.S                  
This complete the proof of the theorem                                                                              
□                
Example 1. For a 1-form 𝜎 =  𝑢 𝑑𝑥 +  𝑣 𝑑𝑦 defined 
over ℝ2. We have, by applying the above formula to each 
term (consider 𝑥 1 =  𝑥 and 𝑥 2 =  𝑦) the following sum, 

   𝑑𝜎 = ��
𝜕𝑢
𝜕𝑥𝑖

𝑑𝑥𝑖
2

𝑖=1

∧ 𝑑𝑥� + ��
𝜕𝑣
𝜕𝑥𝑖 𝑑𝑥

𝑖
2

𝑖=1

∧ 𝑑𝑦� 

              = �𝜕𝑢
𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑥 + 𝜕𝑢

𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑥� 

+ �
𝜕𝑣
𝜕𝑥 𝑑𝑥 ∧ 𝑑𝑦 +

𝜕𝑣
𝜕𝑦 𝑑𝑦 ∧ 𝑑𝑦

� 

                = 0− 𝜕𝑢
𝜕𝑦
𝑑𝑦 ∧ 𝑑𝑥 + 𝜕𝑣

𝜕𝑥
𝑑𝑥 ∧ 𝑑𝑦 + 0 

                = �𝜕𝑣
𝜕𝑥
− 𝜕𝑢

𝜕𝑦
�𝑑𝑥 ∧ 𝑑𝑦. 

 
Example 2.  Suppose the Cartesian coordinates in  ℝ3 are 
given by (𝑥,𝑦, 𝑧). 
1) If  𝑓 is a smooth function on ℝ3, 
      then 𝑑𝑓 = 𝜕𝑓

𝜕𝑥
𝑑𝑥 + 𝜕𝑓

𝜕𝑦
𝑑𝑦 + 𝜕𝑓

𝜕𝑧
𝑑𝑧. 

The vector formed by its coefficients ( 𝜕𝑓
𝜕𝑥

, 𝜕𝑓
𝜕𝑦

, 𝜕𝑓
𝜕𝑧

)  is the 
gradient of  𝑓, denoted by  𝑔𝑟𝑎𝑑 𝑓. 
 
2) Suppose  𝑎 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦 + 𝐶𝑑𝑧,    where  𝐴,𝐵,𝐶 are 
smooth functions onℝ3. Then 𝑑𝑎 = 𝑑𝐴 ∧ 𝑑𝑥 + 𝑑𝐵 ∧
𝑑𝑦 + 𝑑𝐶 ∧ 𝑑𝑧 

= �𝜕𝐶
𝜕𝑦
− 𝜕𝐵

𝜕𝑧
�𝑑𝑦 ∧ 𝑑𝑧 + �𝜕𝐴

𝜕𝑧
− 𝜕𝐶

𝜕𝑥
�𝑑𝑧 ∧  𝑑𝑥 +

                                                   �𝜕𝐵
𝜕𝑥
− 𝜕𝐴

𝜕𝑦
�𝑑𝑥 ∧ 𝑑𝑦. 

Let 𝑋   be the vector (𝐴,𝐵,𝐶), then the vector 

� 
𝜕𝐶
𝜕𝑦

−
𝜕𝐵
𝜕𝑧 ,

𝜕𝐴
𝜕𝑧 −

𝜕𝐶
𝜕𝑥 ,

𝜕𝐵
𝜕𝑥 −

𝜕𝐴
𝜕𝑦 � 

formed by the coefficients of  𝑑𝑎  is just the  𝑐𝑢𝑟𝑙 of the 
vector field 𝑋, denoted by 𝑐𝑢𝑟𝑙 𝑋 .  
 

3) Suppose  𝑎 = 𝐴𝑑𝑦 ∧  𝑑𝑧 + 𝐵𝑑𝑧 ∧  𝑑𝑥 + 𝐶𝑑𝑥 ∧  𝑑𝑦. 
Then  

𝑑𝑎 = � 
𝜕𝐴
𝜕𝑥

,
𝜕𝐵
𝜕𝑦 ,

𝜕𝐶
𝜕𝑧
�  𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 

                            = 𝑑𝑖𝑣 𝑋 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 
where  𝑑𝑖𝑣 𝑋  means the divergence of the vector field     
                             𝑋 = (𝐴,𝐵,𝐶). 
From theorems, two fundamental formulas in a vector 
calculus follow immediately. Suppose  𝑓 is a smooth 
function on ℝ3 and 𝑋 is a smooth tangent vector field on  
ℝ3 . Then 

�𝑐𝑢𝑟𝑙 ( 𝑔𝑟𝑎𝑑 𝑓 ) = 0
  𝑑𝑖𝑣 ( 𝑐𝑢𝑟𝑙 𝑋 )  = 0 

 
4. Integration of Differential Forms 
 
The calculus of differential forms [2], [6] provides a 
convenient setting for integration on manifolds, as we 
explain in this section due to the efficient way it keeps 
track of change of variables. 
A 𝑘 −form 𝛽 on an open set 𝐺 ⊂ ℝ𝑛has the for 
 

            𝛽 = ∑ 𝑏𝑗𝑗 (𝑥)𝑑𝑥𝑗1⋀…⋀𝑑𝑥𝑗𝑘                      (1) 
 

Here 𝑗 = (𝑗1, … , 𝑗𝑘) is a 𝑘 −multi-index. We write 𝛽 ∈
⋀𝑘(𝐺). The wedge product used in (1) has the anti-
commutative property 
             𝑑𝑥𝑙 ∧ 𝑑𝑥𝑚 = −𝑑𝑥𝑚 ∧ 𝑑𝑥𝑙                                                  
So that if 𝜎is a permutation of {1, … ,𝑘} we have 
                                           
𝑑𝑥𝑗1 …⋀𝑑𝑥𝑗𝑘 = (𝑠𝑔𝑛 𝜎)𝑑𝑥𝑗𝜎(1)⋀…⋀𝑑𝑥𝑗𝜎(𝑘)         (2)                 
In particular, an 𝑛 −form 𝛼 on Ω ⊂ ℝ𝑛 can be written 
              𝛼 = 𝐴(𝑥)𝑑𝑥1⋀…⋀𝑑𝑥𝑛 
If 𝐴 ∈ 𝐿1(𝐺,𝑑𝑥) then we write      
          ∫ 𝛼𝐺 = ∫ 𝐴(𝑥)𝑑𝑥𝐺                                          (3) 
the right side being the usual Lebesgue integral. 
Suppose now Ω ⊂ ℝ𝑛 is open and there is a 𝐶1 
diffeomorphism 𝐹:Ω → G. We define the pull back 𝐹∗𝛽 
of the 𝑘 −form in (1) as 
                                           
𝐹∗𝛽 = ∑ 𝑏𝑗𝑗 �𝐹(𝑥)��𝐹∗𝑑𝑥𝑗1�⋀…⋀�𝐹∗𝑑𝑥𝑗𝑘�              (4) 
where 

𝐹∗𝑑𝑥𝑗 = �
𝜕𝐹𝑗
𝜕𝑥𝑙𝑙

 𝑑𝑥𝑙 

If 𝐵 = (𝑏𝑙𝑚) is an 𝑛 × 𝑛 matrix then by (2) and the 
formula for the determinant gives 
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��𝑏1𝑚
𝑚

𝑑𝑥𝑚�⋀��𝑏2𝑚
𝑚

𝑑𝑥𝑚�⋀…⋀��𝑏𝑛𝑚
𝑚

𝑑𝑥𝑛𝑚�       

= ��(𝑠𝑔𝑛 𝜎)
𝜎

𝑏1𝜎(1)𝑏2𝜎(2)𝑏𝑛𝜎(𝑛)�𝑑𝑥1⋀…⋀𝑑𝑥𝑛 

                                                  = (det𝐵) 𝑑𝑥1⋀…⋀𝑑𝑥𝑛 
Hence if 𝐹:Ω → G is a 𝐶1 map and 𝛼 is an 𝑛 −form on 
𝐺as in (4) then  

𝐹∗𝛼 = det𝐷 𝐹(𝑥)  𝐴�𝐹(𝑥)�𝑑𝑥1⋀…⋀𝑑𝑥𝑛 
This formula is especially significant in light of the 
change of variable formula 
                            
∫ 𝐴(𝑥)𝑑𝑥𝐺 = ∫ 𝐴�𝐹(𝑥)�Ω  | det𝐷 𝐹(𝑥) |𝑑𝑥         (5)   
                 
The only difference between the right side of  (5) and 
∫ 𝐹∗𝛼Ω  is the absolute value sign around det𝐷 𝐹(𝑥). We 
say a 𝐶1 map 𝐹:Ω → G is orientation preserving when 
det𝐷 𝐹(𝑥) > 0 for all 𝑥 ∈ Ω. 
 
Proposition 1. If 𝐹:Ω → G is a 𝐶1 orientation preserving 
diffeomorphism and 𝛼 an integrable 𝑛 − form on 𝐺 then 
                   ∫ 𝛼𝐺 = ∫ 𝐹∗𝛼Ω  
Proof. The wedge product of 𝑑𝑥𝑙’s extends to a wedge 
product on form as follows. If 𝛽 ∈ ⋀𝑘(𝐺) has the form (1) 
and if 

𝛼 = �𝛼𝑖
𝑖

(𝑥)𝑑𝑥𝑖1⋀…⋀𝑑𝑥𝑖𝑙 ∈ ⋀
𝑙(𝐺) 

define 
𝛼⋀𝛽 = �𝛼𝑖

𝑖,𝑗

(𝑥)𝑏𝑗(𝑥) 𝑑𝑥𝑖1⋀…⋀𝑑𝑥𝑖𝑙⋀𝑑𝑥𝑖1⋀…⋀𝑑𝑥𝑖𝑙 

in  ⋀𝑘+𝑙(𝐺), it follows that  𝛼⋀𝛽 = (−1)𝑘𝑙𝛽⋀𝛼 
It is also readily verified that 𝐹∗(𝛼⋀𝛽) = (𝐹∗𝛼)⋀(𝐹∗𝛽). 
Another important operator on forms is the exterior 
derivative 𝑑:⋀𝑘(𝐺) → ⋀𝑘+1(𝐺) defined as follows. If 
𝛽 ∈ ⋀𝑘(𝐺) is given by (3) then 

𝑑𝛽 = �
𝜕𝑏𝑗
𝜕𝑥𝑙𝑗,𝑙

 𝑑𝑥𝑙⋀𝑑𝑥𝑗1⋀…⋀𝑑𝑥𝑗𝑘   

If 𝛽 ∈ ⋀𝑘(𝐺) and 𝐹:Ω → G is a smooth map. Now 
𝑑𝐹∗𝛽

= �
𝜕
𝜕𝑥𝑙𝑗,𝑙

�𝑏𝑗 ∘ 𝐹(𝑥)� 𝑑𝑥𝑙⋀�𝐹∗𝑑𝑥𝑗1�⋀…⋀�𝐹∗𝑑𝑥𝑗𝑘�

+�(±)
𝑗,𝑣

𝑏𝑗(𝐹(𝑥))(𝐹∗𝑑𝑥𝑗1)⋀…⋀�𝐹∗𝑑𝑥𝑗𝑣�⋀…⋀�𝐹∗𝑑𝑥𝑗𝑘� 

Now pull back gives directly that  

𝐹∗𝑑𝑥𝑖 = �
𝜕𝐹𝑖
𝜕𝑥𝑙𝑙

 𝑑𝑥𝑙 = 𝑑𝐹𝑖  

and hence 𝑑(𝐹∗𝑑𝑥𝑖) = 𝑑𝑑𝐹𝑖 = 0, so only first sum in (A) 
contributes to 𝑑𝐹∗𝛽. Meanwhile 

𝐹∗𝑑𝛽

= �
𝜕𝑏𝑗
𝜕𝑥𝑚𝑗,𝑚

(𝐹(𝑥))(𝐹∗𝑑𝑥𝑚)�𝐹∗𝑑𝑥𝑗1�⋀…⋀�𝐹∗𝑑𝑥𝑗𝑘� 

so we have  

�
𝜕
𝜕𝑥𝑙𝑙

�𝑏𝑗 ∘ 𝐹(𝑥)� 𝑑𝑥𝑙 = �
𝜕𝑏𝑗
𝜕𝑥𝑚𝑚

(𝐹(𝑥))𝐹∗𝑑𝑥𝑚 

which in turn follows from the chain rule. 
If 𝐻:𝑀 → ℝ𝑚 is a smooth map and 𝛾 is a 𝑘 −form onℝ𝑚 
then there is well defined 𝑘 −form 𝛾 = 𝐻∗𝛾 on 
𝑀.represented in such coordinate charts 𝛽𝐽 = (𝐻 ∘ 𝐹𝑗)∗𝛾 . 
Similarly if 𝛽 −is a 𝑘 −form on 𝑀as defined above and 
𝐻:𝑈 → 𝑀is smooth with 𝑈 ⊂ ℝ𝑚 open then 𝐻∗𝛽 is a 
well defined 𝑘 −form on 𝑈. 
We define the integral of an 𝑛 −form over an oriented 
𝑛 −dimensional manifold as follows. First 𝛼 −in an 
𝑛 −form supported on an open set 𝐺 ⊂ ℝ𝑛  given by (4) 
then we define ∫ 𝛼𝐺 b. 
More generally, if 𝑀is an 𝑛 −dimensional manifold with 
an orientation say the image on an open set 𝐺 ⊂ ℝ𝑛  by 
𝜑:𝐺 → 𝑀 carrying the natural orientation of 𝐺 we can set 

�𝛼
𝑀

= �𝜑∗𝛼
𝐺

 

For an 𝑛 −form 𝛼 on 𝑀. If it takes several coordinates 
patches to cover 𝑀 define ∫ 𝛼𝑀  by writing 𝛼 as a sum of 
forms, each supported on one patch. 
We need to show that this definition of ∫ 𝛼𝑀  is a 
independent of the choice of coordinate system on 𝑀. 
Thus suppose 𝜑:𝐺 → 𝑈 ⊂ 𝑀 and 𝜓:Ω → 𝑈 ⊂ 𝑀 are both 
coordinate patches so that 𝐹 = 𝜓−1 ∘ 𝜑:𝐺 → Ω is an 
orientation preserving diffeomorphism. We need to check 
that if 𝛼 is an 𝑛 −form on 𝑀 supported on 𝑈, then  

�𝜑∗𝛼
𝐺

= �𝜓∗𝛼
Ω

= �𝐹∗(𝜓∗𝛼)
𝐺

 

Thus the integral of an 𝑛 −form over an oriented 
𝑛 −dimensional manifold is well defined. 
 
Proposition 2. Given a compactly supported (𝑘 −
1) −form 𝛽 of class 𝐶1 on an oriented 𝑘 −dimensional 
surface 𝑀�  (of class C2) with boundary 𝜕𝑀 with its natural 
orientation 
          ∫ 𝑑𝛽𝑀 = ∫ 𝛽𝜕𝑀                                                      (6) 
 

Proof. Using a partition of unity and invariance of the 
integral and the exterior derivative under coordinate 
transformations it suffices to prove this 𝑀��� = {𝑥 ∈
ℝ𝑘 :𝑥1 ≤ 0}. In that case we will be able to deduce (6) 
from the fundamental theorem of calculus. If 𝛽 =
𝑏𝑗(𝑥)𝑑𝑥1⋀…⋀𝑑𝑥𝑗⋀…⋀𝑑𝑥𝑘 with 𝑏𝑗(𝑥) of bounded 
support, we have 

𝑑𝛽 = (−1)𝑗−1
𝜕𝐵𝑗
𝜕𝑥𝑗

𝑑𝑥1⋀…⋀𝑑𝑥𝑛 

If 𝑗 > 1 we have 

�𝑑𝛽
𝑀

= (−1)𝑗−1 � ��
𝜕𝐵𝑗
𝜕𝑥𝑗

∞

−∞
𝑑𝑥𝑗�𝑑𝑥𝑙 = 0 

And also 𝑘∗𝛽 = 0, where 𝑘:𝜕𝑀 → 𝑀�  is the inclusion. On 
the other hand for 𝑗 = 1 we have  

�𝑑𝛽
𝑀

= ���
𝜕𝐵1
𝜕𝑥1

∞

−∞
𝑑𝑥1� 𝑑𝑥2⋀…⋀𝑑𝑥𝑘

= �𝑏1(0,𝑥𝑙) 𝑑𝑥𝑙 = �𝛽
𝜕𝑀

 

This proves Stokes’ formula. 
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Proposition 3. [4] There is no smooth retraction 𝜑:𝐵 →
𝑆𝑛−1 of the close unit ball 𝐵 in ℝ𝑛 onto its 
boundary 𝑆𝑛−1.  
 
Proposition 4. [4] If 𝐹:𝐵 → B is a continuous map on the 
closed unit ball in ℝ𝑛 ,  then 𝐹 has a fixed point. 
Theorem 4. For any 𝜔 ∈ Ω𝑘(𝑀) the formula 
𝑑𝜔(𝑋1, … ,𝑋𝐾+1) 

= �(−1)𝑖−1
𝑖

𝑋𝑖 �𝜔�𝑋1, … ,𝑋�, … ,𝑋𝑘+1��

+ �(−1)𝑖+𝑗𝜔(�𝑋𝑖 ,𝑋𝑗�, �𝑋1, … ,𝑋𝚤� , … ,𝑋𝚥� , … ,𝑋𝑘+1�
𝑖<𝑗

 

defines a (𝑘 + 1)-form 𝑑𝜔 ∈ Ω𝑘+1(𝑀). 
 
Proof. To show that 𝑑𝜔 is a (𝑘 + 1) −form we need to 
show that 
𝑑𝜔 is anti-symmetric i.e. for any 𝑟 < 𝑠 

𝑑𝜔(𝑋1, … ,𝑋𝑟 , … ,𝑋𝑠 , … ,𝑋𝑘+1)
= −𝑑𝜔(𝑋1, … ,𝑋𝑟 , … ,𝑋𝑠 , … ,𝑋𝑘+1) 

𝑑𝜔 is multi-linear at each point ,i.e. 𝑑𝜔 is 𝐶∞(𝑀) linear 
on 𝑀. Note that 𝑑𝜔 is obviously ℝ−linear. So for any 
𝑓 ∈ 𝐶∞(𝑀) 

𝑑𝜔(𝑓𝑋1,𝑋2, , … ,𝑋𝑘+1) = 𝑓𝑑𝜔(𝑋1, … ,𝑋𝑘+1) 
This can be checked by a direct computation: 

𝑑𝜔(𝑓𝑋1,𝑋2, , … ,𝑋𝑘+1) 
= 𝑓𝑋1�𝜔(𝑋2, … ,𝑋𝑘+1)�

+�(−1)𝑖−1
𝑖>1

𝑋𝑖 �𝜔�𝑓𝑋1, … ,𝑋𝚤� , … ,𝑋𝑘+1��

+�(−1)𝑖+𝑗𝜔([𝑓𝑋1,𝑋𝑖], �𝑋2, … ,𝑋𝚤� , … ,𝑋𝑘+1�
𝑖>1

 

= 𝑓𝑑𝜔(𝑋1, … ,𝑋𝑘+1)
+ �(−1)𝑖−1

𝑖>1

(𝑋𝑖𝑓) �𝜔�𝑋1, … ,𝑋𝚤� , … ,𝑋𝑘+1��

−�(−1)𝑖−1
𝑖>1

(𝑋𝑖𝑓) �𝜔�𝑓𝑋1, … ,𝑋𝚤� , … ,𝑋𝑘+1�� 

                     = 𝑓𝑑𝜔(𝑋1, … ,𝑋𝑘+1) 
 
5. Geometrical description of Differential forms: 
 
The geometrical notion of the gradient of the function, 
such as the temperature in a room, the ordinary 3-
dimensional vector ∇𝑇(𝑟) defines a vector field 
throughout the room, which is usually described by saying 
that it is the direction of greatest change of 𝑇, at the 
particular point with coordinates 𝑟��⃗ . However the surfaces 
of constant value of the temperature 𝑇 to which the the 
direction ∇𝑇 is perpendicular. These are surfaces much 
like equipotentials for electrostatics, where the 
temperature does not change. It is altogether plausible that 
the surface on which the function does not change is the 
one that is perpendicular to the direction of its greatest 
change. 
We therefore take the analytic idea that 𝑑𝑓 is the 
generalization of the gradient of 𝑓, i.e., ∇𝑓. As in the case 
of tangent vectors and directional derivatives, the 
comparison is reasonable since the two quantities have the 

same components, only the basis vectors look different. 
Again the new basis vectors for 𝑑𝑓 are defined locally at 
each single point 𝑃 on the manifold [5]. Then we may say 
that geometrically it corresponds to a local view of the 
surfaces of constant values for 𝑓. Since they are locally 
defined over an 𝑚−dimensional manifold, surfaces of 
constant values for some function, say the temperature 𝑇, 
are (𝑚− 1)−ddimensional surfaces so called hyper 
surfaces since they are only one less dimension than the 
entire space. The simplest 1−form 𝑑𝑇 is an algebraic 
representation of the set of hyper surfaces of the constant 
value for 𝑇 at the point. 
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